Why do the slides look like this?

(New) Faculty Forum - February 5, 2013
Prof. Jeremy Sit
Department of Electrical and Computer Engineering
Midterm Exam #1

- Friday, February 8, in class
- “Practical” circuit problems
- “Theory” concept/explanation problems
- Problem sets, Review packages, textbook readings
Recent handouts

• Problem Set #5
• Midterm Exam #1 – Review
• Midterm Exam #1 – Information
• Introduction – Part B
• Review – Part B (website)
New handouts

• Midterm #1 – Review problems
• Problem Set #5
• Problem Set #5 solutions (website)
Problem Set #5

- Handed out today
- Also available on course website
- Problems on R-C delay and transistor sizing
Course website

• URL: http://ece304.jsit.ca
• Username: student
• Password: Digital101 (note: case sensitive)
• Please visit often
Summary of last class

- Using the simplified R-C model
 - R scales inversely with W; C scales directly with W
- Replace FETs with R-C models
- Simplify the R-C circuit
A.5 Pass-transistor logic and trans. gates

• the “bad” non-invertor (buffer)
 • strong vs. degraded 1s and 0s
• the transmission gate
• pass-transistor logic
A.5.3 Pass-transistor logic

• Consider a 2:1 multiplexor

• Write down function $Y = f(S, P, Q)$.

• List all possible functions of one variable $Y = f(S)$.
Prob A-15: AND gate

Implement an AND gate \(Y = AB \)

a) Implement using fully complementary static CMOS logic. How many transistors are required?

\[\text{AND} = \text{NOT NAND} \]
b) Use 2:1 multiplexors...
Prob A-15: AND gate

c) Use 2:1 multiplexors...
B.1.4 Transistor sizing

- We want to design logic gates so that their delay is the same or better than the unit width inverter.
- This means the pull-up and pull-down resistance must be $\leq R$ in all cases.
Prob B-4: Complex gate transistor sizing

• Size the transistors appropriately...
B.1.5 Elmore delay

- Approximate the delay of a complex R-C network “tree”.
- Easiest to understand by looking at examples.
B.1.6 Logical effort

• Text:
 • 3rd ed. §4.2~4.3
 • 4th ed. §4.3~4.5

I think I can, I think I can ...