Each of 458 and 459 is a complete self-standing course, and may be taken by either a Chemical or Materials student. If a student takes it once, it is called “CME 458”. The second time it will be called “CME 459”. Both courses cannot be taken in one term.

SYLLABUS

as of December 2, 2016

Policy about course outlines can be found in Section 23.4(2) of the University Calendar.

Course description: individual research project under the supervision of an academic faculty member.

Credits: 3.5 (each)

The course starts:
September 1, 2016 (Fall Term; registration deadline with no academic record is September 15); January 9, 2017 (Winter Term; registration deadline with no academic record is January 20).

The course ends (final report due): December 7, 2016 (Fall Term); April 12, 2017 (Winter Term).

Spring/Summer: TBA.

Required weekly allocated time: to be discussed with the project supervisor; the recommended “in-class” time is at least 5 hr per week + “homework” time

Instructor and coordinator
The research project is performed under the supervision of an academic faculty member. The list of the CME Faculty members and their contact information can be found at: http://www.cme.engineering.ualberta.ca/FacultyStaff/FacultyAcademicStaff.aspx

The course coordinator ensures student’s registration, collects reports and assigns final grades (subject to the Dean’s approval) based on recommendations from the supervisor.

Course coordinator: Dr. Natalia Semagina. Office: Donadeo ICE building, 12-330. E-mail: semagina@ualberta.ca.

Important dates
Progress report deadline: November 4, 2016, 4 pm (Fall Term); March 10, 2017, 4 pm (Winter Term)
Final report deadline: December 7, 2016, 4 pm (Fall Term); April 12, 2017, 4 pm (Winter Term).

The reports’ submission must be done both via e-mail of a pdf file to course coordinator semagina@ualberta.ca and a hard copy must be submitted to the Assignment box. If your report is too large to fit in, bring it to Heather Green or Project coordinator before the deadline time. It is student’s responsibility to ensure that the report is received in time.
Late submission
10% of the final mark will be deducted if the progress report is not submitted on time. One each business day of delay to submit the Final report results in 10% mark deduction. Note that the deadline extension is not possible, except for the reasons outlined at the University calendar (section 23.3 “Attendance”, such as incapacitating illness, severe domestic affliction, or religious convictions).

Grading principles
This is not a pass/fail course. The course coordinator will assign the final grade based on the supervisor’s recommendation and evaluation form, and will submit the grade to the Dean’s office for approval.

100% mark is based on the Final Report evaluation form to be completed by the project supervisor. The Final Report Evaluation raw score will be lowered by 10% for the failure to submit a progress report in time, and by 10% for each working day of delay of the Final report.

For the percentage of the report evaluation, refer to the Evaluation form (appendix). A student passes the course with a score of 3 out of 5 or higher (after all applied deductions). A necessary condition to pass the course, along with the total score of 3, is that at least the “satisfactory” mark is assigned in both “Intellectual contribution to the project” and “Analytic content: quality of treatment”.

How to register
Note: a student cannot register on-line for this course, the registration must be done by Heather Green upon receiving the registration form as explained below.
1. The course is open only to Chemical or Materials students with a GPA of 3.0 or greater during the previous two academic terms. The prerequisite to CME 459 is CME 458.
2. Select a project from the Project List (Appendix), discuss it with a supervisor, complete the registration form (Appendix), obtain signatures from the Supervisor and Course coordinator (for CPC and Oilsands stream students only, the approval signature is also required from appropriate advisor). Return the signed completed form to Heather Green to complete your registration.
3. If a desired project is not included in the Project List, a student is encouraged to discuss such a project with the professor whom she/he considers best qualified as supervisor of the project. A brief written project description (title and one-page abstract) must be prepared and the project must be approved by the CME 458/459 coordinator (via e-mail). After that, the registration form should be signed and submitted as explained above.
4. A CME 458/459 project may not be combined with a Dean’s Research Award as the Award “can’t be concurrent with a project for which credit is received.”

Requirements to the reports
1. The Progress Report should be 1-2 pages long, summarize the work done on the project and tasks still to be performed (“list” format is recommended). It is not graded per se, but the failure/delay of submitting it will result in 10% final mark deduction. Its purpose is to track student’s progress.
2. Final Report. There is no required page limit (unless indicated by the supervisor), please make sure that the content matches the evaluation criteria in the evaluation form (Appendix), unless a different report outline was approved by the supervisor and course coordinator. Typically, the report is about 20-30 pages (not including appendices with raw data, if any).
For the CME 459 project, please keep in mind that this is a separate report, not cumulative with your previous CME 458 report. If any data from the CME 458 report is used, they should be properly cited and distinguished from the current work.

All reports will be handed in to the course coordinator, or submitted to the Assignment box before the deadline time. The course coordinator will distribute the reports to the appropriate supervisor(s). The late submission will be penalized as discussed above.

Academic integrity
The University of Alberta is committed to the highest standards of academic integrity and honesty. Students are expected to be familiar with these standards regarding academic honesty and to uphold the policies of the University in this respect. Students are particularly urged to familiarize themselves with the provisions of the Code of Student Behaviour (online at www.uofaweb.ualberta.ca/governance/studentappealsregulations.cfm) and avoid any behaviour which could potentially result in suspicions of cheating, plagiarism, misrepresentation of facts and/or participation in an offence. Academic dishonesty is a serious offence and can result in suspension or expulsion from the University.

Audio/video recording
Audio or video recording of lectures, labs, seminars or any other teaching environment by students is allowed only with the prior written consent of the instructor or as a part of an approved accommodation plan. Recorded material is to be used solely for personal study, and is not to be used or distributed for any other purpose without prior written consent from the instructor.
PROJECT SELECTION (REGISTRATION FORM)

Indicate which course you will be registering for:
If a student takes it first time, it is called “CME 458”. The second time it will be called “CME 459”.

CME458 ______ CME 459 ______

Term in which the project is to be completed (circle):

Fall Term (Sept-Dec) Winter Term (Jan-April) Spr/Sum Term (May-Aug)

Name of Student: ___________________________________ ID No. ________________

GPA in the last two full academic terms: ________

The course is open only to Chemical or Materials students with a GPA of 3.0 or greater during the previous two academic terms

No. of Project in Listing: ________

If your Project is not listed, please provide a short written description of the project to the Course Coordinator

Title of Project: __

Supervisor(s): ___

(Please print)

Signature of Supervisor(s): __

Signature of Course Coordinator: __

Dr. Natalia Semagina

__

** For CPC and Oilsands stream students only, approval is required from appropriate advisor.

Please indicate program: Chemical CPC ________ Chemical Oilsands ________

Name: __________________________ Signature: ________________________________

(Please print) (Advisor)
The Course includes an Engineering design component, which is defined by CEAB as “an ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, and economic, environmental, cultural and societal considerations. Engineering design integrates mathematics, natural sciences, engineering sciences, and complementary studies in order to develop elements, systems, and processes to meet specific needs. It is a creative, iterative, and open-ended process, subject to constraints which may be governed by standards or legislation to varying degrees depending upon the discipline. These constraints may also relate to economic, health, safety, environmental, societal or other interdisciplinary factors”.

Evaluation criteria:
A student passes the course with a score of 3 out of 5 or higher (after all applied deductions); the final grade will be assigned by the course coordinator. A necessary condition to pass the course, along with the total score of 3, is that at least the “satisfactory” mark is assigned in both “Intellectual contribution to the project” and “Analytic content: quality of treatment”. The Final Report Evaluation raw score will be lowered by 10% for the failure to submit a progress report in time, and by 10% for each working day of delay of the Final report. The course coordinator will assign the final mark and submit it to the Dean’s office for approval.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>% of the mark</th>
<th>Excellent (5 pts)</th>
<th>Good (4 pts)</th>
<th>Satisfactory (3 pts)</th>
<th>Unsatisfactory (0 pts)</th>
<th>Max. score (max pts*%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual contribution to the project</td>
<td>25</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>1.25</td>
</tr>
<tr>
<td>Analytic content: quality of treatment</td>
<td>25</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>1.25</td>
</tr>
<tr>
<td>Overall command of the topic</td>
<td>10</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.5</td>
</tr>
<tr>
<td>Organization of content</td>
<td>4</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.2</td>
</tr>
<tr>
<td>Introduction: clarity of motivation and objectives</td>
<td>5</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.25</td>
</tr>
<tr>
<td>Thoroughness of the literature review, incl. state-of-the-art references</td>
<td>10</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.5</td>
</tr>
<tr>
<td>Conclusions and/or perspectives: informativeness and conciseness</td>
<td>5</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.25</td>
</tr>
<tr>
<td>Overall appearance</td>
<td>3</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.15</td>
</tr>
<tr>
<td>Grammar and spelling</td>
<td>4</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.2</td>
</tr>
<tr>
<td>Clarity</td>
<td>4</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.2</td>
</tr>
<tr>
<td>Style (academic writing)</td>
<td>5</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>0.25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>5 pts</td>
</tr>
</tbody>
</table>

Other comments (if any): The supervisor may suggest a grade. If more than one student is supervised, please indicate the approximate ranking, which the course coordinator will take into consideration

Signature(s) of the supervisor(s), date __________________________
Raw score based on the above evaluation:_______________

☐ At least a “satisfactory” mark is assigned in both “Intellectual contribution to the project” and “Analytic content: quality of treatment”

Final report handed in
☐ in time,
☐ with delay _____ days (penalty 10% of the report mark per one working day of delay)

Progress report handed in ☐ in time, ☐ not handed in (penalty 10%)

Final mark:___________________ Course coordinator:____________________________

Name, signature, date
The Project List includes only some representative projects. If a desired project is not included in the Project List, a student is encouraged to discuss such a project with the professor whom she/he considers best qualified as supervisor of the project. A brief written project description (title and one-page abstract) must be prepared, and the project must be approved by the CME 458/459 coordinator.

Project 1a: Impact of metal halides on oilsands conversion

Supervisor: A. de Klerk
Type of Project: Experimental
Number of Students: 1 (or more, each with an individual sub-project)

Oilsands bitumen contains low levels of chloride salts in the connate water. The general view on chloride salts is that they should be removed, because of downstream corrosion and fouling. The work that was performed with halogenation of oilsands bitumen, as well as alkylation work using FeCl$_3$ as a catalyst, suggested that the chemistry of metal halides during oilsands upgrading is more insidious. It appears that it is possible to transfer a portion of the halides from the metal halides to the bitumen by forming organohalides. Once halogenated compounds are formed, they provide a facile pathway for free radical addition reactions. Free radical addition leads to increased production of very heavy material that has a detrimental impact on the upgrading of bitumen. This is therefore a problem of industrial significance and importance.

The objective of the study is to systematically investigate metal halide compounds to determine whether only acidic metal halides are involved in halide transfer, or whether this is a general issue.

The work will be experimental in nature and it will involve work with model compounds, as well as industrial feed materials. Reactions will be conducted in reactors and products will be characterized by appropriate analytical techniques. The training necessary to perform the work will be provided. This project will be of interest mainly to those interested in oilsands upgrading or improving their general knowledge about analytic characterization of materials.

Project 1b: Investigate beneficial and deleterious effect of metal halides on oilsands bitumen properties

Supervisor: A. de Klerk
Type of Project: Experimental
Number of Students: 2 (with individual sub-projects)

Oilsands bitumen naturally contains metal chlorides such as NaCl, CaCl$_2$, and MgCl$_2$. It is amply known that such metal halides physically impact bitumen processing, i.e. they cause corrosion and fouling of equipment. However, previous studies demonstrated that metal halides could be participating in chemical reactions at low temperatures, which may affect bitumen properties. Therefore, this study aims in investigating the impact of metal halides at low temperature (50 – 150 °C), which is typical of oilsands bitumen extraction. After reacting bitumen with metal halides of different acidic properties, reaction products will be characterized by different analytical techniques. Some examples are bitumen viscosity, halogen content, coke propensity, aromaticity, etc.
Project 2: Correlation for liquid viscosity estimation

Supervisor: A. de Klerk
Type of Project: Theoretical
Number of Students: 1

One of the pure compound physical properties that are only poorly predicted by estimation procedures is liquid viscosity. Although there are many correlations available, as summarized in “Properties of gases and liquids” (many editions of this book), it is also clear that none of the correlations can be relied upon to always have good predictions, even for simple molecules. This can possibly be ascribed to the limited set of useful properties that can be employed for useful physical property correlations, but more likely it is because the true origin of viscosity is poorly understood.

The objective of this project is to determine what properties affect liquid viscosity most. For this purpose the intent is to make use of an extended range of pure compound properties to develop a correlation for pure compound liquid viscosity.

The work will be theoretical (computational) in nature. Guidance will be provided with respect to the type of properties that should be considered. The property values will be obtained from the literature using the Reaxys Beilstein-database. One suggested approach to the identification of the most relevant properties is the use of principal component analysis (PCA). Another suggested approach is to make use of hierarchical clustering. Training and assistance will be provided for the application of both methods.

Project 3: Novel hydrogel materials for skin-adhesive biosensors

Supervisor: Hyun-Joong Chung
Type of Project: Experimental

Most tissues in biological systems are soft, whereas conventional electronic devices are made of hard materials. When the electronic devices can be flexible/stretchable with a good adhesion to human skin, the resulting device can be easily wearable to monitor physiological parameters from human body. Imagine band-aid or Tegaderm to monitor human health! Hydrogel is the key material to realize the grand goal of my research program. A specific target for the student project is (i) to study the fundamental physical chemistry of the hydrogel materials and/or (ii) to develop hydrogel materials for energy devices, wound dressings, or other practical applications.

Project 4: Blood glucose sensor

Supervisor: Stevan Dubljevic
Type of Project: Computational

The fast and reliable glucose sensor needs to be realized as simple input-output relationship between the changes in the blood glucose concentration and sensing device, see Fig.1. In particular, we are looking in the representation in the following form:
The important aspect of the model is that sensor data are discrete functions in time, that is a measurement of the glucose that is registered at sensing cite, which is taken in some time intervals. In other words, the output of the model is discrete function of time \(y(t) \rightarrow y(k) \) where \(k \) represents time instance. Having the spatially distributed nature of the system on one side, the discrete measurements of glucose taken at the time sample instances which are specified by the sensor features on the other, one needs to incorporate all these aspects in robust, cheap, and reliable sensing mechanism to address accurate enough on-line real measurement of glucose in blood.

Project 5: Solidification of an aluminum bulk metallic glass

Supervisor: H. Henein

Type of Project: Experimental

Bulk metallic glasses are a new class of materials characterized by their amorphous structure under low cooling rates of solidification. The resultant alloy has high hardness and low ductility. Some of these new classes of alloys are incorporated into new designs of golf clubs. A new Al based bulk amorphous alloy will be atomized and the structure characterized using x-ray, and microscopy techniques. The hardness of the alloy will also be measured. A model of droplet cooling will be used to estimate the droplet cooling rate prior to solidification. The resultant structure and properties will be related to the droplet cooling rate.

Engineering objectives:
- Develop experimental testing strategy.
- Carry out atomization experiments.
- Use of various microscopy techniques to characterize the solidified microstructure.
- Carry out x-ray diffraction analysis of powders.
- Use hardness measurements to estimate the mechanical properties.
- Relate mechanical properties to the evolution of microstructure.
Project 6: The Effect of Warm Rolling on the Morphology of Cementite in Low alloy Steels
Supervisor: H. Henein
Type of Project: Experimental

Low alloy steels are used for down hole applications in the oil and gas sector. As down hole conditions of oil and natural gas extraction are worsening, producers encounter the presence of hydrogen sulfide with consequences such as sulfide stress cracking (SSC) instigated by hydrogen. There is increasing evidence that the morphology of cementite in these quenched and tempered steels plays a role in the SSC behaviour. The objective of this project is to explore the use of warm rolling as a processing strategy to modify the morphology of cementite. The project will involve carrying out a literature review on the subject, plan and execute an experimental warm rolling test matrix, followed by the quantitative characterization of the microstructure using Optical and SEM microscopy, X-ray diffraction. In addition, other characterization techniques such as hardness measurements may be used as needed. An analysis of the experimental and characterization results will be carried out.

Project 7: Additive Manufacturing of Polymers, Metals and Composites
Supervisor: H. Henein (hani.henein@ualberta.ca)
Type of Project: Experimental
Number of students: up to 3 (including projects 5 and 6). Preference will be given to students doing both CME 458 and 459 (in consecutive terms).

The approach of Additive Manufacturing (AM) presents many opportunities to revolutionize manufacturing. There are today numerous approaches to carrying out AM. There is, however, a paucity of data and knowledge about the properties of the materials being processed. The level of porosity, the microstructural evolution, the surface finish, the mechanical properties are amongst the issues of interest. There are several projects available to generate knowledge on these aspects of several AM processing approaches.

Project 8: Permeation of cryoprotectants in tissue
Supervisor: Janet A. W. Elliott
Type of Project: Theoretical / Numerical
Number of students: 1

Cryopreservation is the use of very low temperatures (e.g., liquid nitrogen $-196 \, ^\circ$C) to store biological materials with the requirement that cells be alive and functional after thawing. UofA is one of the world’s leading centres for cryopreservation research; in a collaborative UofA team we recently developed a protocol to cryopreserve intact human articular cartilage (the smooth cell-filled material on the ends of bones that lets them move past one another in joints). We are beginning exciting new research to cryopreserve other tissues that are currently transplanted in humans. One of the first steps is to understand how cryoprotectants (antifreeze additives) move into and out of tissue. This involves cryoprotectant and water transport in a porous elastic medium where temperature dependence is important. We have some experience in this type of modelling and fitting experimental data to obtain parameters that may be used in prediction and cryopreservation protocol design.

In this project, the student will attempt to model and fit experimental data for cryoprotectant uptake in tissue. This interdisciplinary project will have the student interacting with researchers in both medicine (who performed the experiments) and engineering (who are experienced with similar mathematical models).